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Abstract. It is useful to have lists of unlabelled (i.e., nonisomorphic) chemical reaction networks

(CRNs), with or without various restrictions such as reversibility. One may, for example, be inter-

ested in exploring how often certain dynamical behaviours occur in small CRNs, or wish to search

for examples to illustrate some aspect of the theory. In such cases, it is often natural to examine all

nonisomorphic CRNs in the class of interest. Inspired by the related project of Deckard et al [1],

this document outlines some interesting classes of CRNs, and the methodology involved in listing

all CRNs in these classes. The accompanying data (i.e., lists of nonisomorphic CRNs in the various

classes) is at https://reaction-networks.net/networks/.

1. Introduction

When discussing the combinatorial structure of a chemical reaction network (CRN), the basic

objects are the chemical species, the complexes and the reactions. Suppose that the species of

a CRN are X1, . . . ,Xk. A complex is a formal linear combination of species of the form a1X1 +

a2X2 + · · ·+akXk where each ai is a nonnegative integer, the stoichiometry of Xi in the complex. A

complex a1X1+a2X2+ · · ·+akXk such that
∑

i ai ≤ 2 is termed an at most bimolecular complex, or

a 2-complex for short. The zero complex 0X1+ · · ·+0Xk is denoted 0 (note that 0 is a 2-complex).

An ireversible reaction is an ordered pair of complexes, the source complex (or left hand side of the

reaction) and the target complex (or right hand side of the reaction). Thus any chemical reaction

on the set of species {Xi} takes the form∑
i

aiXi →
∑
i

biXi

Such a reaction is at most bimolecular if its source and target complexes are 2-complexes. From

here on, at most bimolecular CRNs will be termed 2-CRNs, and only 2-CRNs are treated; the

modifications required if larger stoichiometries are allowed are fairly straightforward.

By basic principles of choice with repetition, there are

nC(k) :=

(
k + 2

2

)
2-complexes on k species, including the zero complex.
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1.1. The complex graph, and basic restrictions: no loops or parallel edges. A CRN R
is just a set of chemical species and a set of reactions, and is then naturally identified with its

complex graph, the digraph whose vertices are the complexes of the network and whose arcs are its

(irreversible) reactions. Two common conventions about CRNs adopted here are

(1) The source and target complexes of a reaction are distinct: the complex graph has no loops.

(2) Two distinct reactions cannot have the same source and target complexes: the complex

graph has no parallel arcs (antiparallel arcs are of course allowed, corresponding to reversible

reactions).

The first of these conventions is quite natural, while the second is more arbitrary: with certain

choices of kinetics allowing the same reaction to figure more than once can enlarge the set of

allowed models of a CRN, while for others (most importantly, mass action) it cannot.

1.2. Petri net graphs and isomorphism. For the purposes of discussing isomorphism, the most

useful representation of a CRN is via its Petri net (PN) graph [2], an edge-weighted bipartite digraph

(equivalently, since edge-weights are positive integers, a bipartite multidigraph). The PN graph of

a CRN R, denoted PN(R), has two vertex sets VS (species vertices) and VR (reaction vertices).

Given Xi ∈ VS and Rj ∈ VR, there exists an arc XiRj (resp., RjXi) with weight w if and only if the

species Xi occurs with stoichiometry w on the left (resp., right) of the reaction Rj . For example,

the PN graph of X + Y → 2Y, Y → X 
 0 takes the form:

X Y

4

3

1

2

2

Arc-weights of 1 have been omitted and reaction vertices have been given numerical labels. CRNs

R1 and R2 are isomorphic if PN(R1) and PN(R2) are isomorphic in the following natural sense:

there exists a relabelling of the vertices of PN(R1) which preserves the bipartition and gives

PN(R2). This accords with the intuition that two CRNs are fundamentally “the same” if some

renaming of species and reactions in one gives us the other. Isomorphism is of course an equivalence

relation on the set of CRNs and we refer to an equivalence class of isomorphic CRNs as an unlabelled

CRN.

1.3. ODE models. In order to describe some interesting classes of CRNs we need brief mention

of differential equation models of CRNs.

A real vector x = (x1, . . . , xk)t is nonnegative (resp., positive) if xi ≥ 0 (resp., xi > 0) for each i.

The set of nonnegative (resp., positive) vectors in Rk is denoted Rk
≥0 (resp., Rk

�0). Subsets of Rk
�0
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are referred to as positive. x � 0 means xi > 0 for each i; x ≥ 0 means xi ≥ 0 for each i; x > 0

means x ≥ 0 and x 6= 0.

Consider a CRN R involving k chemical species X1, . . . , Xk with corresponding concentration vec-

tor x = (x1, . . . , xk)t and m irreversible reactions. Choosing some orderings on the species and

reactions one can define nonnegative n × m matrices L and R as follows: Lij (resp., Rij) is the

stoichiometry of species Xi in the source complex (resp., target complex) of reaction j. The ir-

reversible stoichiometric matrix of R is Γ = R − L. The jth column of Γ is termed the reaction

vector for the jth reaction.

If the reactions of R proceed with rates v1(x), v2(x), . . . , vm(x), then the evolution of the species

concentrations is then governed by the ODE:

(1) ẋ = Γv(x).

where v(x) = (v1(x), v2(x), . . . , vm(x))t is the rate function of R. The allowed choices of v(x)

depend on various modelling choices; but many reasonable choices imply that v(x) � 0 for any

x� 0. In this case we say that R has positive kinetics.

2. Counting unlabelled CRNs with NAUTY [3]: the basic classes

While NAUTY does not allow direct operation on edge-labelled digraphs or multidigraphs, these

can be represented as layered digraphs. I.e. individual vertices become sets of vertices, additional

vertex colouring is introduced, and edges with different labels become edges between vertices of

different colours as described in the section Isomorphism of edge-coloured graphs of the NAUTY

documentation at http://users.cecs.anu.edu.au/~bdm/nauty/nug26.pdf. Via this process, a

2-CRN with k species and l reactions can be represented as an ordinary digraph on 2(k+ l) vertices

with edges labelled 1 or 2 now corresponding to arcs between different sets of vertices in the digraph.

In this form, a CRN is in fact a digraph with four vertex colours, two corresponding to different

layers of species vertices, and two corresponding to different layers of reaction vertices. (Indeed,

an at most trimolecular CRN can be represented as a digraph on 2(k + l) vertices, but if larger

total stoichiometry is allowed, then additional vertices need to be introduced.) NAUTY can be

used to canonically label digraphs while respecting the partition of the vertices, and so we can get

a canonical representative of a given CRN, by first converting it to a digraph, applying NAUTY’s

canonical labelling, and then converting back to a CRN.

2.1. Counting irreversible 2-CRNs. All unlabelled 2-CRNs with k species and l reactions can

be generated as follows:
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(1) irreversible reactions are ordered pairs of distinct complexes: consequently there are a total

of

nR(k) := nC(k)(nC(k)− 1)

distinct irreversible reactions involving the nC 2-complexes;

(2) all possible sets of l distinct reactions are generated and stored as edge-labelled digraphs,

represented (in digraph6 format) as two-layer vertex-coloured digraphs as described in the

NAUTY user guide at http://users.cecs.anu.edu.au/~bdm/nauty/nug26.pdf. There

are

Nk,l :=

(
nR(k)

l

)
=

((k+2
2

) ((
k+2
2

)
− 1
)

l

)
of these CRNs; for fixed k and l small compared to

(
k+2
2

) ((
k+2
2

)
− 1
)

, Nk,l grows quite

rapidly. For example:

N4,1 = 210, N4,2 = 21945, N4,3 = 1.52× 106, N4,4 = 7.87× 107, . . .

(3) the NAUTY program shortg is used to canonically label and remove isomorphs from this

list of CRNs, respecting the species-reaction bipartition. We are left with Nk,l unlabelled

CRNs. For example:

N4,1 = 22, N4,2 = 1171, N4,3 = 67257, N4,4 = 3.33× 106, . . .

Remark 2.1 (Maximally dense CRNs). A 2-CRN with k species can have no more than nR(k) =(
k+2
2

) ((
k+2
2

)
− 1
)

reactions. The unique 2-CRN with k species and nR(k) reactions can be thought

of as a maximally “dense” CRN with k species, which contains all other k-species 2-CRNs as

subnetworks obtained by removing some reactions.

Remark 2.2 (Automorphisms of CRNs). Each labelled CRN on k species lies in an isomorphism

class consisting of upto k! CRNs (corresponding to each possible permutation of the species). The

actual size of the isomorphism class is less than k! if and only if the CRN has nontrivial symmetries.

For example the CRN A → B → C → A has nontrivial symmetry: its automorphism group is

isomorphic to Z3 and consequently its isomorphism class has size 6/3 = 2. Looking at the numbers,

the great majority of CRNs with more than a few species and reations have no nontrivial symmetries.

For example, N4,4/N4,4 ' 23.65, namely, the average orbit size of the 4 species, 4-reaction CRNs

is close to 4!.

2.2. Counting reversible 2-CRNs. All reversible unlabelled 2-CRNs with k species and l re-

versible reactions can be generated similarly to the irreversible case. A 2-CRN with k species and

l reversible reactions is of course a CRN with k species and 2l irreversible reactions. However the

reversible 2-CRNs are best enumerated directly as follows.
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(1) Reversible reactions are unordered pairs of distinct complexes: consequently there are a

total of nr
R(k) :=

(
nC(k)

2

)
of these;

(2) all possible sets of l distinct reversible reactions are generated and stored as edge-labelled

digraphs, represented (in digraph6 format) as two-layer vertex-coloured digraphs. There

are

N r
k,l :=

(
nr
R(k)

l

)
=

(((k+2
2 )
2

)
l

)
of these CRNs;

(3) the NAUTY program shortg is used to canonically label and remove isomorphs from this

list of CRNs, respecting the species-reaction bipartition. We are left with N r
k,l unlabelled

CRNs. By comparison with the numbers above for irreversible reactions, for example:

N r
4,1 = 13, N r

4,2 = 325, N r
4,3 = 8713, N r

4,4 = 205948, . . .

2.3. Using invariants. The size of the enumeration problem grows rapidly with the number of

species and reactions. For example, there are N4,5 = 3,244,032,792 labelled CRNs with four species

and five reactions which fall into N4,5 = 135,622,844 isomorphism classes. It becomes natural –

and indeed necessary – to divide up the raw unlabelled CRNs using invariants which are easily

computed before attempting to remove isomorphs. Thus one might, for example, divide up the

raw CRNs according to how many edges with edge-label 2 they have, before using shortg to

remove isomorphs from each list, and finally merging the lists. Some of the larger sets of CRNs

at https://reaction-networks.net/networks/ were enumerated in a multi-stage process in this

way. However, even with the use of invariants, handling the N5,5 = 106,337,815,584 labelled CRNs

with five species and five reactions on a desktop becomes challenging! Just storing these CRNs

in (uncompressed) digraph6 format would take about 6 terabytes of space. On the other hand

parsing the data several times leads to a large increase in terms of simulation time. Dealing with

these issues is work in progress.

2.4. Enumeration by inheritance. In the light of the explosion in problem size, an alternative

to enumerating labelled CRNs and then separating these into isomorphism classes is to build larger

CRNs from smaller ones. For example, given representatives from each isomorphism class of CRNs

with k species and l reactions, we may hope to build the unlabelled CRNs with k species and l + 1

reactions as follows: we take each CRN with k species and l reactions, and add to it every possible

reaction on k species which does not already occur in it; we then remove isomorphs from this list

of CRNs with k species and l + 1 reactions. This certainly gives a complete list of nonisomorphic

CRNs with k species and l + 1 reactions, since the removal of any reaction from a CRN with k

species and l + 1 reactions leaves a valid CRN with k species and l reactions.
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Note, however, that we cannot interchange species and reactions in this approach: there are valid

CRNs with k+ 1 species and l reactions, which do not contain any valid induced subnetworks with

k species and l reactions. As an example consider the CRN

A + B → A, B → A + B.

Removal of A leaves B → 0, B → B, while removal of B leaves A→ A, 0→ A, neither of which is

a valid CRN (recall that in our definition of a CRN, source and target complexes of each reaction

are distinct). Thus this CRN has no induced subCRNs involving 1 species and 2 reactions, and so

cannot be built by adding species into a CRN involving 1 species and 2 reactions.

3. Counting interesting subclasses of CRNs

The raw CRNs enumerated as described in the previous section may be interesting from a purely

combinatorial point of view, but we may wish to exclude some of them for various reasons. Below

is a (far from exhaustive) list of some interesting subclasses of CRNs with some comments on their

enumeration.

3.1. Genuine CRNs. The definition of a CRN does not exclude the possibility that some species

participate in no reactions. However, when analysing CRNs with k species and l reactions one may

want to exclude ones with species which figure in no reactions (corresponding to isolated species

vertices in the PN graph). CRNs which do not have such trivial species are termed genuine (for

want of a better word).

Remark 3.1 (Maximum number of species in a genuine CRN). Since an at most bimolecular

reaction involves a maximum of 4 species, clearly a genuine 2-CRN with l reactions can have and

more than 4l species.

Remark 3.2 (Counting genuine CRNs given the numbers for all CRNs). The number NG
k,l of

unlabelled genuine CRNs with k species and l reactions is easily seen to satisfy

NG
k,l = Nk,l −Nk−1,l .

This follows because the k-species, l-reaction CRNs which are not genuine are exactly those obtained

from (k − 1)-species l-reaction CRNs via addition of a redundant species.

3.2. Indecomposable CRNs. More generally, one may wish to exclude CRNs with disconnected

PN graphs (namely CRNs whose species can be divided into two nonempty non-interacting subsets).

We refer to CRNs with disconnected PN graphs as decomposable, while CRNs with connected PN

graphs are indecomposable. If we are interested in searching for new dynamical behaviours which

arise in larger CRNs, then exluding decomposable CRNs is natural, as their dynamics decouples

into that of the smaller CRNs of which they are composed.
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Remark 3.3 (Indecomposable CRNs are genuine). The indecomposable CRNs are clearly a subset

of the genuine CRNs.

3.3. Dynamically nontrivial CRNs. We might also wish to exclude CRNs which are in some

way uninteresting from a dynamical point of view. Consider a CRN R consisting of k species and

l irreversible reactions with k× l stoichiometric matrix Γ. R is referred to as dynamically trivial if

there exists a linear scalar function which increases along all positive orbits for any positive kinetics

(see Section 1.3), and dynamically nontrivial otherwise. Equivalently, R is dynamically trivial if

there exists a vector q > 0 in im Γt. To see the equivalence, note that given p s.t. Γtp = q > 0, for

any kinetics such that x� 0⇒ v(x)� 0, we have

d

dt
ptx = ptẋ = qtv(x) > 0

and thus ptx increases along orbits at every point in Rk
�0.

By standard arguments, a dynamically trivial CRN R can have no limit sets intersecting Rk
�0. If

we are primarily interested in CRNs which potentially admit positive equilibria, periodic orbits,

chaos, etc., then we would wish immediately to exclude the dynamically trivial CRNs.

Remark 3.4. Note that to state that a CRN is dynamically nontrivial only implies the nonexistence

of an increasing linear functional; we do not claim that for a dynamically nontrivial CRN there

must exist some positive limit points of the flow for arbitrary positive kinetics.

Remark 3.5 (Testing whether a given CRN is dynamically trivial). This is a linear programming

feasibility problem, which can be solved, for example, with the help of the linear programming package

GLPK (http: // www. gnu. org/ software/ glpk/ glpk. html ).

3.4. Weakly reversible CRNs. Another class of CRNs which may be of interest are the weakly

reversible CRNs. A CRN is weakly reversible if every connected component (CC) of its complex

graph is a strongly connected component (SCC). Let Γ be the stoichiometric matrix of a CRN R
consisting of irreversible reactions.

Remark 3.6 (Weakly reversible CRNs are dynamically nontrivial). As is well known and easily

proved, if R is weakly reversible, then ker Γ includes a positive vector. Consequently, im Γt includes

no vector > 0 (Theorem 3’ in [4], for example) and the claim follows.

Remark 3.7 (Reversible CRNs are weakly reversible). This is immediate from the definitions.

Remark 3.8 (Testing for weak reversibility). The test for whether a CRN R is weakly reversible

is a standard graph theoretic test on the complex graph of R. We can, for example, take each CC

and check if it is an SCC using Tarjan’s algorithm.
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3.5. Fully open CRNs. An important and highly studied subclass of CRNs are the “fully open

CRNs”. One possible interpretation of “fully open” would be to class a CRN with stoichiometric

matrix Γ as fully open if rank Γ (namely, the dimension of the stoichiometric subspace, im Γ) is equal

to the total number of species. Equivalently, the system has no linear first integrals. However, for

some purposes it is useful to adopt a stricter notion (see, for example, [5]): here, a CRN involving

species X1, . . . ,Xk is defined to be fully open if and only if it includes all the reactions 0 
 Xi

(i = 1, . . . , k). Reactions not of the form 0→ Xi or Xi → 0 are termed non-flow reactions.

Remark 3.9 (Fully open CRNs are genuine and dynamically nontrivial). Clearly a fully open CRN

is genuine. It is also easily seen that a fully open CRN is dynamically nontrivial.

One way of enumerating fully open CRNs with k reactions and l non-flow reactions is to consider all

CRNs with k reactions and l reactions and remove any which include a reaction of the form 0→ Xi

or Xi → 0. Noting that two fully open CRNs are isomorphic if and only if they are isomorphic

after removal from both of the flow reactions 0 
 Xi, these are now precisely the fully open CRNs

with all the reactions 0 
 Xi removed.

Alternatively fully open CRNs may be enumerated directly. This proceeds in a similar fashion to

enumerating general CRNs. We describe the process for the general case; the special case of fully

open, reversible, CRNs is easily obtained via minor modifications. All unlabelled, fully open CRNs

with k species and l non-flow reactions can be generated as follows:

(1) As already noted there are a total of nC(k)(nC(k)−1) distinct irreversible reactions involving

all 2-complexes; from these we exclude reactions of the form 0 → Xi and Xi → 0 leaving

nR,o(k) := nC(k)(nC(k)− 1)− 2k distinct non-flow reactions;

(2) all possible sets of l distinct non-flow reactions are enumerated. There are

No
k,l :=

(
nR,o(k)

l

)
=

((k+2
2

) ((
k+2
2

)
− 1
)
− 2k

l

)
of these CRNs;

(3) the NAUTY program shortg is used to canonically label and remove isomorphs from this

list of CRNs, respecting the species-reaction bipartition. These CRNs are precisely the set

of all fully open CRNs with the reactions 0 
 Xi removed.

Although the numbers No
k,l grow almost as fast as the numbers Nk,l, note that a fully open CRN

with k species and l non-flow reactions is actually a CRN with k species and l + 2k reactions, and

a much greater proportion of fully open CRNs with k species and l non-flow reactions are likely

to be dynamically interesting than the corresponding proportion for CRNs with k species and l

reactions.
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Remark 3.10. The fully open CRNs stored at https: // reaction-networks. net/ networks/

have the reactions 0→ Xi and Xi → 0 removed. Thus to reconstruct the fully open CRNs from the

stored networks, these need to be added.

Fully open, reversible, CRNs can be enumerated similarly:

(1) From the
(
nC(k)

2

)
distinct reversible reactions we exclude the reactions 0 
 Xi leaving

nr
R,o(k) :=

(
nC(k)

2

)
− k distinct reversible non-flow reactions;

(2) all possible sets of l distinct reversible non-flow reactions are enumerated. There are
(nr

R,o(k)

l

)
of these CRNs. These are precisely the set of all fully open reversible CRNs with the

reactions 0 
 Xi removed.

(3) shortg is used to canonically label and remove isomorphs from this list of CRNs, respecting

the species-reaction bipartition.

Remark 3.11. The fully open, reversible, CRNs stored at https: // reaction-networks. net/

networks/ have the reactions 0 
 Xi removed. Thus to reconstruct the fully open, reversible CRNs

from the stored networks, these need to be added.

4. Relationships among classes of CRNs discussed

Inclusions amongst the various classes of 2-CRNs discussed here are illustrated in the diagram

below. A→ B means A ⊇ B, and in fact all the inclusions are strict. The following acronyms are

used: DN = dynamically nontrivial, WR = weakly reversible, FO = fully open, R = reversible, G

= genuine, I = indecomposable.

all

DN

WR

FO

R

FO + R

G

DN + G

WR + G

R + G

I

DN + I

WR + I

R + I

FO + I

FO + R + I
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The sets “all”, “fully open”, “reversible” and “fully open, reversible” (highlighted in red) are

directly enumerated as described above. The remaining sets are enumerated by taking some parent

set (connected to the set via a bold arrow) and checking for additional properties. For example,

the dynamically nontrivial CRNs are obtained from the set of all CRNs by testing each CRN for

the property of being dynamically nontrivial; the weakly reversible CRNs are obtained from the

set of all dynamically nontrivial CRNs by testing each for the property of weak reversibility; the

set “DN + G” is obtained from “DN” by testing each CRN for the property that it has no isolated

species. And so forth.
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