Slow Manifolds for CRNs

David Siegel

Applied Mathematics University of Waterloo

June 23, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Unique Slow Manifold in a Trapping Region Michaelis-Menten Enzyme Model Lindemann Model

Perturbative Approaces

Tikhonov–Levinson Theory Normally Hyperbolic Invariant Manifolds

Directions

References

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 ─ のへぐ

Unique Slow Manifold in a Trapping Region

For a two-dimensional system with a globally stable equilibrium point, we seek a trapping region which contains a unique invariant manifold approaching the equilibrium point in the slow direction. This idea is originally due to the chemists Simon Fraser and Marc Roussel.

Michaelis-Menten-Henri Enzyme Model

$$S + E \stackrel{\longrightarrow}{\longleftarrow} C \longrightarrow P + E$$

$$\begin{cases} \dot{s} = -k_1 s e + k_{-1} c \\ \dot{e} = -k_1 s e + (k_{-1} + k_2) c \\ \dot{c} = k_1 s e - (k_{-1} + k_2) c \\ \dot{p} = k_2 c \end{cases}$$

$$s(0) = s_0, \ e(0) = e_0, \ c(0) = 0, \ p(0) = 0 \\ e + c = e_0 \Rightarrow e = e_0 - c \\\\\begin{cases} \dot{s} = -k_1 s (e_0 - c) + k_{-1} c \\ \dot{c} = k_1 (e_0 - c) - (k_{-1} + k_2) c \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

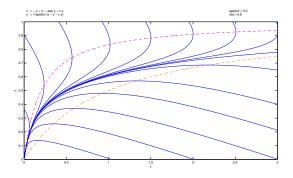


Figure 1: c vs. s

The origin (0,0) is a node with eigenvalues $\lambda_2 < \lambda_1 < 0$ and slow eigenvector $(1, \sigma)^T$, $\sigma > 0$. Let $\tilde{k} = k_{-1} + \frac{k_2}{1+\sigma}$. Then $k_{-1} < \tilde{k} < k_{-1} + k_2$ Horizontal Isocline [Quasi-Steady-State Approximation]: $c = h(s) = \frac{k_1 e_0 s}{k_1 c \perp k_2 \ldots k_n}$ Vertical Isocline [Rapid Equilibrium Approximation]: $c = v(s) = \frac{k_1 e_0 s}{k_1 s \perp k_1}$ σ -Isocline: $c = w(s) = \frac{k_1 e_0 s}{k_1 s + \tilde{k}}$ For trajectories below the vertical isocline, consider c as a function of s, with $\frac{dc}{ds} = f(s, c) = \frac{k_1 s(e_0 - c) - (k_{-1} + k_2)c}{-k_1 s(e_0 - c) + k_{-1} c}$.

We have $w'(0) = \sigma$ and $w'(s) < \sigma = f(s, w(s))$ for s > 0. Also, $\lim_{s\to\infty}(w(s) - h(s)) = 0$. Thus the region between the horizontal isocline and the σ -isocline is a narrowing anti-funnel [terminology of Hubbard & West]. Therefore, it contains a unique trajectory, c = M(s). It is a unique globally defined slow manifold.

(日) (同) (三) (三) (三) (○) (○)

Asymptotics of *M* near 0: Let $\kappa = \frac{\lambda_2}{\lambda_1}$ and $\sigma_1 = \sigma$.

For
$$\kappa \notin \mathbb{N}$$
: $c = \sum_{n=1}^{\lfloor \kappa \rfloor} \sigma_n s^n + C s^{\kappa} + o + (s^{\kappa}) \text{ as } s \to 0.$
For $\kappa = 2$; $c = \sigma_1 s + \sigma_2 s^2 \ln s + C s^2 + o(s^2) \text{ as } s \to 0.$
For $\kappa \in \{3, 4, \ldots\}$: $c = \sum_{n=1}^{\kappa-1} \sigma_n s^n + C s^{\kappa} + o(s^{\kappa}) \text{ as } s \to 0.$

The proof involes an iteration procedure, based on integral equations, which is insensitive to resonance.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lindemann Model

$$2A \stackrel{\longrightarrow}{\longleftarrow} A + B, \quad B \longrightarrow P$$

$$\begin{cases} \dot{a} = -k_1 a^2 + k_{-1} a b \\ \dot{b} = k_1 a^2 - K_{-1} a b - k_2 b \\ \dot{p} = k_2 e \end{cases}$$

$$a(0) = a_0, \quad b(0) = 0, \quad p(0) = 0$$

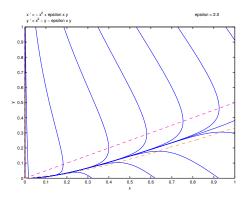


Figure 2: b vs. a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The origin is a globally attracting degenerate equilibrium point. It has eigenvalues $-k_2$ and 0. The centre direction is along the *a*-axis. For trajectories below the vertical isocline, we consider b as a function of a, satisfying $\frac{db}{da} = f(a, b) = \frac{k_1 a^2 - k_{-1} a b - k_2 b}{-k_1 a^2 + k_{-1} a b}$ Vertical Isocline: $b = v(a) = \frac{k_1}{k_1}a$ Horizontal Isocline: $b = h(a) = \frac{k_1 a^2}{k_2 + k_{-1} a}$. Intermediate Isoclne: $b = w(a) = \frac{k_1 a^2}{\tilde{k} + k_1 a}, \ 0 < \tilde{k} < k_2$, \tilde{k} chosen as large as possible so that w'(a) < f(a, w(a)) for a > 0. This gives the smallest anti-funnel. Therefore, there exists a unique invariant curve, b = M(a) between h and w. Note: the anti-funnel is not narrowing as $a \to \infty$. Near the origin, we have $M(a) = h(a) + O(a^3)$ as $a \to 0$.

Perturbative Approaches

Consider the Michaelis-Menten-Henri (MMH) Model. Introduce nondimensional variables:

$$\overline{t} = k_1 e_0 t, \ \lambda = \frac{k_2}{k_1 s_0}, \ \kappa = \frac{k_{-1} + k_2}{k_1 s_0}$$

 $x(\overline{t}) = \frac{s(t)}{s_0}, \ y(\overline{t}) = \frac{c(t)}{e_0}, \ \epsilon = \frac{e_0}{s_0}$
Dropping the bar on t , we have:

Slow System
$$S_{\epsilon}$$

$$\begin{cases}
\dot{x} = f(x, y) = -x + (x + \kappa - \lambda)y \\
\epsilon \dot{y} = g(x, y) = x - (x + \kappa)y
\end{cases}$$

x(0) = 1, y(0) = 0. This is a singularly perturbed initial value problem.

Let $\tau = \frac{t}{\epsilon}$ and denote a derivative with respect to τ by a prime. We have: Fast System F_{ϵ} $\begin{cases} x' = \epsilon f(x, y) \\ y' = g(x, y) \end{cases}$

Tikhonov–Levinson Theory

Consider general f, g, x(0) and y(0). Motivated by S_0 , assume g(x, y) = 0 has a solution $y = \phi_0(x)$ and the reduced problem $\dot{X}_0 = f(X_0, \phi_0(X_0)), X_0(0) = x(0)$ has a solution for $0 \le t \le T$. Let $Y_0 = \phi_0(X_0)$.

Seek a solution in the form
$$\left\{ egin{array}{l} x(t,\epsilon) = X(t,\epsilon) + \epsilon \xi(au,\epsilon) \ y(t,\epsilon) = Y(t,\epsilon) + \eta(au,\epsilon) \end{array}
ight.$$

$$\begin{pmatrix} X(t,\epsilon) \\ Y(t,\epsilon) \end{pmatrix} \sim \sum_{j=0}^{\infty} \begin{pmatrix} X_j(t) \\ Y_j(t) \end{pmatrix} \epsilon^j, \begin{pmatrix} \xi(\tau,\epsilon) \\ \eta(\tau,\epsilon) \end{pmatrix} \sim \sum_{j=0}^{\infty} \begin{pmatrix} \xi_j(\tau) \\ \eta_j(\tau) \end{pmatrix} \epsilon^j$$

 $\xi_j(\tau), \ \eta_j(\tau) \to 0 \text{ as } \tau \to \infty.$

Assume that $g_y(X_0(t), Y_0(t)) < 0$ for $0 \le t \le T$. We have: $\eta'_0 = g(x(0), \phi_0(x(0)) + \eta_0), \ \eta_0(0) = y(0) - \phi_0(x(0))$. Assume that $\eta_0(0)$ lies in the domain of attraction of $\eta_0 = 0$. Under these assumptions, there is a unique asymptotic series as $\epsilon \to 0$. Note: there are formulations where f and g depend on x, y, t, ϵ . As well, under some conditions, we may take $T = \infty$ [Hoppensteadt].

Normally Hyperbolic Invariant Manifolds

Consider F_0 and the manifold \mathcal{M}_0 given by $y = \phi_0(x)$. Assume that $g_y(x, \phi_0(x)) \leq r < 0$. \mathcal{M}_0 consists of equilibrium points and the trajectories are on vertical lines and approach \mathcal{M}_0 in a neighbourhood of \mathcal{M}_0 . \mathcal{M}_0 is a NHIM. The vertical lines are fibers. For MMH, $g_y = -(x + \kappa) \leq -\kappa$. NHIMs are persistent under perturbations of a system [Fenichel]. This implies that there is an NHIM \mathcal{M}_ϵ close to \mathcal{M}_0 for ϵ

sufficiently small.

Invariance of \mathcal{M}_{ϵ} can be used to give an asyptotic series for it: $y = \phi(x, \epsilon) = \phi_0(x) + \phi_1(x)\epsilon + \cdots$. For MMH, $\phi_0(x) = \frac{x}{x+\kappa}, \ \phi_1(x) = \frac{\lambda\kappa x}{(x+\kappa)^4}.$

Directions

(1) Look for higher dimensional examples of a trapping region containing a unique slow manifold. Ważewski's principle could be useful.

(2) Use persistence of NHIMs to generate slow manifolds, perhaps by continuation.

References

 Matt S. Calder and David Siegel, Properties of the Michaelis-Menten mechanism in phase space, J. Math. Anal. Appl. 339 (2008), 1044–1064.

[2] Matt S. Calder and David Siegel, Properties of the Lindemann reaction in phase space, Electron. J. Qual. Theory Differ. Equ. No. 8 (2011), 31 pp.

[3] Matt S. Calder and David Siegel, Asymptotic beviour near a nonlinear sink, Asymptot. Anal. 78 (2012), no. 4, 187–215.
[4] Tasso J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, Proc. Sympos. Appl. Math., 56, Amer. Math. Soc., Providence, RI, 1999.

[5] Robert J. O'Malley, Jr., Figuring out singular perturbations after a first course in ODEs, Proc. Sympos. Appl. Math., 56, Amer. Math. Soc., Providence, RI, 1999.