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Unique Slow Manifold in a Trapping Region

For a two-dimensional system with a globally stable equilibrium
point, we seek a trapping region which contains a unique invariant
manifold approaching the equilibrium point in the slow direction.
This idea is originally due to the chemists Simon Fraser and Marc
Roussel.



Michaelis-Menten-Henri Enzyme Model

S+ETL C — P+E

s = —klse + k_lc
é=—kise + (k-1 + ko)c
¢ = kise — (k1 + ko)c
,b = k2C

5(0) = S0, 6(0) = €p, C(O) =0, p(O) =0

e+c=e = e=¢—C

s = —kls(eo — C) + k_]_C
c= kl(eo — C) — (kfl + kz)C
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The origin (0,0) is a node with eigenvalues )\2 < A1 <0 and slow
eigenvector (1,0)7, 0 > 0. Let k = k_1 + 1 . Then

ko1 < /} < k_1+ ko.

Horizontal Isocline [Quasi-Steady-State Approximation]:

k
¢ =h(s) = gtk

Vertical Isocline [Rapid Equilibrium Approximation]:

k
¢ =v(s) = gtk

o-lsocline: ¢ = w(s) =

kleosN
kis+k
For trajectories below the vertical isocline, consider ¢ as a function

dc k —(k1tk
of s, with = = f(s,c) = 1i(ffs(§0) £)+1k 1?6'




We have w/(0) = o and w/(s) < o = f(s, w(s)) for s > 0. Also,
lims—o0(w(s) — h(s)) = 0. Thus the region between the horizontal
isocline and the o-isocline is a narrowing anti-funnel [terminology
of Hubbard & West|. Therefore, it contains a unique trajectory,

¢ = M(s). It is a unique globally defined slow manifold.



Asymptotics of M near 0: Let k = % and 01 = 0.

k]
For k ¢ N : c:20ns”+Cs"+o+(s”) as s — 0.

n=1
For k =2; ¢ = 015 + 025%Ins + Cs?+ o(s?) as s — 0.
rk—1
Fork€{3,4,...}: c= Za,,s”—i— Cs"® 4+ o(s") as s — 0.
n=1

The proof involes an iteration procedure, based on integral
equations, which is insensitive to resonance.



Lindemann Model

2AT A+B, B— P

a= —kia® + k_iab
b= k132 — K_1ab — kgb
P = k2e

a(0) = ag, b(0) =0, p(0)=0



X'= =2 + epsilon xy
y' =% -y -epsilon xy

epsilon = 2.0

Figure 2: b vs. a




The origin is a globally attracting degenerate equilibrium point. It
has eigenvalues —kp and 0. The centre direction is along the a-axis.
For trajectories below the vertical isocline, we consider b as a

k132—k_1ab—k2b

function of a, satisfying db = f(a,b) = " i b

Vertical Isocline: b = v(a) = kk—_lla

. . 2
Horizontal Isocline: b = h(a) = szlf,la'
Intermediate Isoclne: b = w(a) = kﬁa 0 < k < ky, k chosen

as large as possible so that w/(a) < f(a, w(a)) for a > 0.

This gives the smallest anti-funnel. Therefore, there exists a
unique invariant curve, b = M(a) between h and w. Note: the
anti-funnel is not narrowing as a — oo.

Near the origin, we have M(a) = h(a)+0(a>) as a — 0.



Perturbative Approaches

Consider the Michaelis-Menten-Henri (MMH) Model.
Introduce nondimensional variables:

F o _ ko —_ k_1+ko
t = kiegt, A = T’ BT ks

x(@) =)y =) =2
Dropping the bar on t, we have:

X=f(x,y) = —x+(x+r=Ay

Slow System S, )
y {eyzg(xjy)zx—(XJrﬂ)y

x(0) =1, y(0) = 0. This is a singularly perturbed initial value
problem.

Let 7 = é and denote a derivative with respect to 7 by a prime.
x' = ef(x,y)

We have: Fast System F.
Y { y' =g(xy)



Tikhonov—Levinson Theory

Consider general f, g, x(0) and y(0). Motivated by Sy, assume
g(x,y) = 0 has a solution y = ¢o(x) and the reduced problem
Xo = f(Xo, $0(X0)), Xo(0) = x(0) has a solution for 0 < ¢t < T.
Let Yy = qb()(Xo).

. x(t,e) = X(t,€) + €&(T,€)
Seek a solution in the form { Yt &) = Y(£. )+ n(r,€)

(V) -5 (%)~ (635G )

(1), nj(t) = 0as 7 — oo.



Assume that g, (Xo(t), Yo(t)) <0 for 0 <t < T. We have:

b = &(x(0), 6o(x(0)) + o). M0(0) = ¥(0) — Go(x(0)). Assume
that 79(0) lies in the domain of attraction of 779 = 0. Under these
assumptions, there is a unique asymptotic series as ¢ — 0.

Note: there are formulations where f and g depend on x, y, t, €. As
well, under some conditions, we may take T = oo [Hoppensteadt].



Normally Hyperbolic Invariant Manifolds

Consider Fy and the manifold Mg given by y = ¢o(x). Assume
that g, (x, ¢o(x)) < r < 0. My consists of equilibrium points and
the trajectories are on vertical lines and approach My in a
neighbourhood of My. Mg is a NHIM. The vertical lines are
fibers. For MMH, g, = —(x + k) < —k.

NHIMs are persistent under perturbations of a system [Fenichel].
This implies that there is an NHIM M, close to Mg for €
sufficiently small.

Invariance of M, can be used to give an asmyptotic series for it:
y = o(x,€) = ¢o(x) + ¢1(x)e + - --. For MMH,

¢0(X) = HLH’ ¢1(X) = (X)f,:)4-




Directions

(1) Look for higher dimensional examples of a trapping region
containing a unique slow manifold. Wazewski's principle could be
useful.

(2) Use persistence of NHIMs to generate slow manifolds, perhaps
by continuation.
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