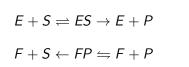
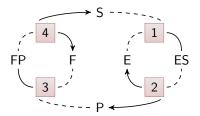
Ruling out Hopf bifurcations in biochemical reaction networks

Casian Pantea, M. Banaji, D. Angeli

West Virginia University, Portsmouth, Imperial

The futile cycle can not give rise to Hopf bifurcations

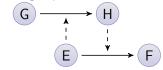


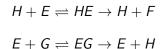


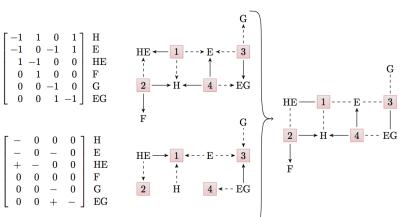
Ingredients

- 1. DSR graph
- 2. P₀-matrices
- 3. Second additive compound matrices

DSR graphs







$$\Gamma = \begin{bmatrix} -1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} E \\ F \\ G \\ EG \end{bmatrix}$$
$$V = \begin{bmatrix} - & 0 & 0 & 0 \\ - & 0 & - & 0 \\ HE \\ - & 0 & - & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & - & 0 \\ 0 & 0 & + & - \end{bmatrix} \begin{bmatrix} H \\ E \\ F \\ G \\ EG \end{bmatrix}$$

F

DSR graphs and P_0 matrices

Theorem [Banaji, Craciun 2009] If the DSR graph associated to Γ and V satisfies condition (*)

(*) all e-cycles are s-cycles and no two e-cycles have odd intersection

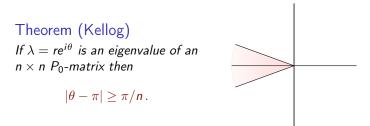
then ΓV is a P_0 -matrix.

• In particular, for an open kinetic system whose Jacobian is $J = -\Gamma V$, multiple equilibria are ruled out.

• The success of the theorem depends on some sign compatibility between Γ and V (satisfied for systems with reasonable kinetics).

P₀-matrices

• square matrices all of whose principal minors are nonnegative.



Second additive compounds $J^{[2]}$ of Jacobian matrices

$$J \in \mathbb{R}^{n \times n}$$
 with Spec $J = \{\lambda_1 \dots, \lambda_n\}$.

 $J^{[2]}$ is an $\binom{n}{2} \times \binom{n}{2}$ matrix and

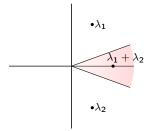
Spec
$$J^{[2]} = \{\lambda_i + \lambda_j | 1 \le i < j \le n\}.$$

Moreover, if $J = \Gamma V$ where $\Gamma, V^t \in \mathbb{R}^{n \times m}$ we can write

$$J^{[2]} = \overline{\mathbf{L}}^{\mathsf{\Gamma}} \underline{\mathbf{L}}^{\mathsf{V}}.$$

 $\overline{\mathsf{L}}^{\Gamma}, (\underline{\mathsf{L}}^{V})^t \in \mathbb{R}^{\binom{n}{2} \times \textit{nm}}$

What if $-J^{[2]}$ is a P_0 matrix?



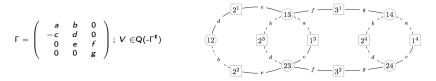
Spec $J \setminus \mathbb{R} \subset \overline{\mathbb{C}_{-}}$

No Hopf bifurcation!

Line of thought

The DSR^[2] graph

• defined to be the DSR graph of $\overline{\mathbf{L}}^{\Gamma}$ and $\underline{\mathbf{L}}^{V}$.

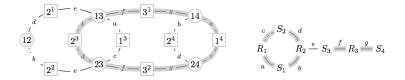


Above DSR^[2] satisfies condition (*), therefore $-J^{[2]}$ is a P_0 -matrix;

no Hopf bifurcations.

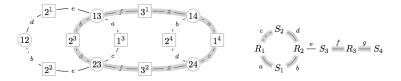
Relationships between DSR and DSR^[2] structures

• cycles in DSR^[2] "project" to closed walks in DSR:



Relationships between DSR and DSR^[2] structures

• cycles in DSR^[2] "project" to closed walks in DSR:



 \bullet in various cases, condition (*) for $\mathsf{DSR}^{[2]}$ translates into nice conditions on DSR:

Theorem (Angeli, Banaji, Pantea, *Comm. Math. Sci.* 2014) Suppose a reaction network has all stoichiometric coefficients equal to 1 and each species participates in at most two reactions. Then Hopf bifurcations are ruled out for any choice of general kinetics.

Thank you!

www.reaction-networks.net

www.reaction-networks.net/control