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Injectivity of generalized polynomial map Fk

on all cosets of im(N) and for all k:

sufficient condition for precluding multiple steady states
on all compatibility classes and for all rate constants

generalized Descartes’ rule of signs

Injectivity and surjectivity of generalized polynomial map f̃x∗ :

equivalent to existence and uniqueness of special steady states

generalized Birch’s Theorem



Chemical reaction networks

Stoichiometry:
1A + 1B → 1C

reactants A, B and product C

Mass-action kinetics:
v = k x1A x1B

rate constant k > 0
concentrations xA(t), xB(t) ≥ 0

Contribution to network dynamics:
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Deficiency zero theorem

dx

dt
= N vk(x) ⇒ x(t)− x(0) ∈ S = im(N)

stoichiometric subspace S

Deficiency:
δ = m− ℓ− dimS

m complexes, ℓ components

Weakly reversible network: each component strongly connected

Theorem

A reaction network has a unique, asymptotically stable, positive (special)
steady state for all initial conditions and all rate constants if and only if it
is weakly reversible and has deficiency zero. (Horn-Jackson ’72, Horn ’72, Feinberg ’72)
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Special steady states

Y Ak x
Y = 0

Complex balancing equilibria:

Zk =
{

x > 0 | Ak x
Y = 0

}

Deficiency:
δ = dim(ker(Y ) ∩ im(Ak))

δ = 0 ⇒ all equilibria complex balancing

x∗ ∈ Zk ⇒ Zk = {x∗ ◦ ev | v ∈ S⊥}

S = ker(W ) with W = (w1, . . . , wn) ∈ R
d×n (with full rank d):

Zk = {x∗ ◦ ξW | ξ ∈ R
d
>}

monomial parametrization
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{x∗ ◦ ξW | ξ ∈ R
d
>} ∩ (x′ + S)

contains exactly one element for all x∗ > 0 and all x′ > 0
⇔ Surjectivity/injectivity of the generalized polynomial map

fx∗ : Rd
> → C◦ ⊆ R

d, ξ 7→
n
∑

k=1

x∗k ξw
k

wk

for all x∗ > 0, where C = cone(W )

Theorem

The map fx∗ is a real analytic isomorphism for all x∗ > 0.

(Birch ’63, Horn-Jackson ’72, Fulton ’93)



Generalized mass-action kinetics

Stoichiometry:
1A + 1B → 1C

Generalized mass-action kinetics:

v = k xaA xbB

kinetic orders a, b ∈ R



Generalized mass-action kinetics

Stoichiometry:
1A + 1B → 1C

Generalized mass-action kinetics:

v = k xaA xbB

kinetic orders a, b ∈ R

Stoichiometry and kinetic orders:
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Ỹ =















a 0
b 0
0 c . . .

0 0
...

...















Network dynamics:
dx

dt
= Y Ak x

Ỹ



Special steady states

Y Ak x
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Special steady states

Y Ak x
Ỹ = 0

Stoichiometric and kinetic-order subspaces:

S = ker(W ) and S̃ = ker(W̃ )

Existence/uniqueness of complex balancing equilibria
for all initial conditions and rate constants:
Surjectivity/injectivity of

f̃x∗ : Rd
> → C◦ ⊆ R

d, ξ 7→
n
∑

k=1

x∗k ξw̃
k

wk

for all x∗ > 0.

Mass-action kinetics: Ỹ = Y

Deficiency zero, Birch’s theorem: S̃ = S, W̃ = W

How much can we perturb the exponents/subspace/cone?



Sign vectors

Generalized Birch’s theorem

The polynomial map f̃x∗ is a real analytic isomorphism for all x∗ > 0, if
σ(S̃) = σ(S) and (+, . . . ,+)T ∈ σ(S⊥).

sign vectors of subspace = oriented matroid
computation of sign conditions: chirotopes (maximal minors)
Proof: Birch’s theorem, face-lattice isomorphism, Brouwer degree
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Generalized Birch’s theorem

The polynomial map f̃x∗ is a real analytic isomorphism for all x∗ > 0, if
σ(S̃) = σ(S) and (+, . . . ,+)T ∈ σ(S⊥).

sign vectors of subspace = oriented matroid
computation of sign conditions: chirotopes (maximal minors)
Proof: Birch’s theorem, face-lattice isomorphism, Brouwer degree

Generalized deficiency zero theorem

A weakly reversible and conservative reaction network with deficiency zero
has a unique positive steady state for all initial conditions, all rate
constants, and all kinetic orders with σ(S̃) = σ(S).



Minimal example

Stoichiometry and kinetic orders:

A + B ⇋ C aA + bB ⇋ cC



Minimal example
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Stoichiometric and kinetic-order subspaces:

S = im(−1,−1, 1)T = ker
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Injectivity of f̃x∗

Injectivity

The polynomial map f̃x∗ is injective for all x∗ > 0, if and only if
σ(S) ∩ σ(S̃⊥) = {0}.

Multistationarity

A weakly reversible reaction network with σ(S) ∩ σ(S̃⊥) 6= {0} has the
capacity for multiple complex balancing equilibria.
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Injectivity of Fk

Unrestricted injectivity:

f̃x∗(ξ) = W (x∗ ◦ ξW̃ )

W ∈ R
d×n, W̃ ∈ R

d̃×n with full rank d, d̃

dx

dt
= Fk(x)

Injectivity on compatibility classes:

Fk(x) = N(k ◦ xV )

N,V ∈ R
n×r possibly with linear dependencies



Result

Theorem

Let Fk : R
n
> → R

n : x 7→ N(k ◦ xV ), where N,V ∈ R
n×r and k ∈ R

r
>.

Further, let S = im(N) and s = rank(N).
The following statements are equivalent:

(inj) Fk is injective on x′ + S, for all x′ ∈ R
n
> and k ∈ R

r
>.

(jac) The Jacobian matrix JFk
(x) is injective on S,

for all x ∈ R
n
> and k ∈ R

r
>.

(min) For all subsets I ⊆ {1, . . . , n}, J ⊆ {1, . . . , r} of cardinality s, the
product det(NI,J) det(VI,J) either is zero or has the same sign as all
other nonzero products, and moreover, at least one product is nonzero.

(sig) σ(ker(N)) ∩ σ(V T (Σ(S∗))) = ∅.

S∗ = S \ {0}
Σ(S) = σ−1(σ(S)), union of all orthants that S intersects



Descartes’ rule of signs

Theorem

The number of positive real roots of a univariate real polynomial
f(x) = c0 + c1x+ · · ·+ crx

r is bounded above by the number of sign
variations between consecutive nonzero coefficients.



Descartes’ rule of signs

Theorem

The number of positive real roots of a univariate real polynomial
f(x) = c0 + c1x+ · · ·+ crx

r is bounded above by the number of sign
variations between consecutive nonzero coefficients.

Partial multivariate generalization

Let A,B ∈ R
n×r with full rank n.

Assume that for all subsets J ⊆ {1, . . . , r} of cardinality n, the product
det(A[n],J) det(B[n],J) either is zero or has the same sign as all other
nonzero products, and moreover, at least one product is nonzero.
Then, the system of n generalized polynomial equations in n unknowns

AxB = y

has at most one positive solution x ∈ R
n
>, for all y ∈ R

n.



Sign vectors

Metabolic networks:

stoichiometric models: thermodynamic feasibility

kinetic models: enzyme allocation
→ constrained nonlinear optimization problem

Oriented matroids:

elementary vectors

sign vectors

conformal sums

S. Müller, G. Regensburger, R. Steuer (2014). Enzyme allocation problems in kinetic
metabolic networks: optimal solutions are elementary flux modes. Journal of Theoretical
Biology, 347:182–190.
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