Multistationarity in chemical reaction networks

Badal Joshi Department of Mathematics California State University, San Marcos

- Chemical reaction network: $(\mathcal{S}, \mathcal{C}, \mathcal{R})$
- Focus on the question of <u>sufficient conditions for</u> <u>multistationarity</u>.
- Can we define a sense in which a network $N_1 \subset_{contained} N_2$ such that the positive steady states of N_1 lift to the positive steady states of N_2 ?

- We will focus on each component:
 - Reactions
 - Species
 - Complexes

Steady states of N do not lift to steady states of G

$$N : A \stackrel{k_1}{\underset{k_2}{\leftrightarrow}} B$$
$$G : A \stackrel{k_1}{\underset{k_2}{\leftrightarrow}} B \qquad 0 \stackrel{k_A}{\rightarrow} A$$

- Clearly $N \subset_{subnetwork} G$.
- For network N, A + B = c, a constant and the steady state within each stoichiometric compatibility class "c" is given by $\left(\frac{k_2c}{k_1+k_2}, \frac{k_1c}{k_1+k_2}\right)$.

• G has no steady states.

Reactions: Non-example

$$N : A \stackrel{k_1}{\underset{k_2}{\leftarrow}} B$$
$$G : A \stackrel{k_1}{\underset{k_2}{\leftarrow}} B \qquad 0 \stackrel{k_A}{\rightarrow} A$$

- S_G : stoichiometric subspace of network G.
- *m_G*: maximum number of steady states that *G* admits within a stoichiometric compatibility class.
- $m_G \ge 2$: G admits MSS/ G is multistationary.
- We would "like that" if $N \subset_{subnetwork} G$, then $m_N \leq m_G$.
- Not true for previous example $(m_N = 1, m_G = 0)$
- Problem: $S_N = span\{(1, -1)\}$ and $S_G = span\{(1, 0), (1, -1)\}$ so that $S_N \subsetneq S_G$.

Theorem (BJ/Shiu)

Let N be a subnetwork of G such that $S_N = S_G$. Then, $m_G \ge m_N$.

Corollary

If G is obtained from N by making some of the irreversible reactions reversible, then $m_G \ge m_N$.

- CFSTR: networks with all species in outflow.
- Let $r \in G \setminus N$ be a (true or nonflow) reaction. Two cases:
- case 1. r does not involve any new species. $S_N = S_G$.
- case 2. r involves new species. Augment N by adding flow reactions of the new species to get \tilde{N} . $S_{\tilde{N}} = S_G$.

Corollary

If N is a sub-CFSTR of G, then $m_G \ge m_N$.

Future work: How far can this theorem be stretched?

- $S_N = S_G$ too strong??
- What about the steady states themselves? Analytic results in parameter space??

- N ⊂_{embedded} G if N can be obtained from G by "removing reactions" or "removing species".
- Example of species removal:

$$A \stackrel{k_1}{\underset{k_2}{\leftrightarrow}} B$$
$$2A + B \stackrel{k_3}{\underset{k_4}{\leftrightarrow}} 3A$$

- N ⊂_{embedded} G if N can be obtained from G by "removing reactions" or "removing species".
- Example of species removal:

$$A \stackrel{k_1}{\underset{k_2}{\leftrightarrow}} \mathcal{B}$$
$$2A \quad \neq \mathcal{B} \quad \stackrel{k_3}{\underset{k_4}{\leftrightarrow}} 3A$$

- N ⊂_{embedded} G if N can be obtained from G by "removing reactions" or "removing species".
- Example of species removal:

$$A \stackrel{k_1}{\underset{k_2}{\leftarrow}} 0$$
$$2A \qquad \stackrel{k_3}{\underset{k_4}{\leftarrow}} 3A$$

$$G: \qquad 0 \underset{k_2}{\overset{k_1}{\leftrightarrow}} A \qquad 3A \underset{k_4}{\overset{k_3}{\leftrightarrow}} 2A + B$$

• *G* has unique mass-action steady state
$$\left(\frac{k_1}{k_2}, \frac{k_1k_3}{k_2k_4}\right)$$
.

$$N \subset_{embedded} G: 0 \stackrel{k_1}{\underset{k_2}{\leftrightarrow}} A \qquad 3A \stackrel{k_3}{\underset{k_4}{\leftrightarrow}} 2A$$

• N does admit multiple positive mass-action steady states. • $m_N > m_G$!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Lifting steady states from embedded networks

Q. When does $N \subset_{embedded} G$ imply that $m_N \leq m_G$?

Definition

 F_x is a <u>flow-type subnetwork</u> of G if (1) F_x only involves one species x and (2) x = 1 is an admissible nondegenerate steady state.

Examples of flow-type subnetworks:

- $0 \leftrightarrows A.$
- $0 \leftrightarrows 2A.$
- $0 \leftrightarrows A \quad , \quad 2A \leftrightarrows 3A.$

Theorem (BJ/Shiu)

 $N \subset_{embedded} G$ such that:

2 If x is a species in $G \setminus N$, there exists $F_x \subset_{subnetwork} G$.

$$\implies m_N \leq m_G.$$

Corollary

- $N \subset_{embedded} G$ such that:
 - N is a CFSTR.
 - 2 G is a fully open CFSTR.

 $\implies m_N \leq m_G.$

Future work: How far can this theorem be pushed?? For instance, $m_G \ge m_N$ for the following network: $G: A \leftrightarrows B \qquad 2A + B \leftrightarrows 3A$ and N is obtained by removing species B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

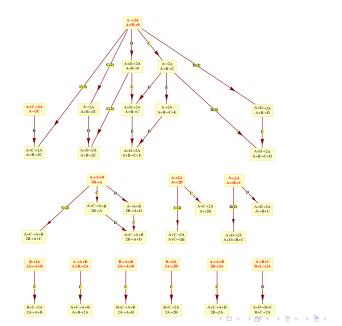
Definition

G is an atom of multistationarity if:

② There is no N such that $m_N \ge 2$ and $N ⊂_{embedded} G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two reaction bimolecular atoms of multistationarity



E 990

Theorem (BJ)

A one-reaction fully open network

$$X_{i} \rightleftharpoons 0$$

$$a_{1}X_{1} + \ldots + a_{n}X_{n} \rightleftharpoons b_{1}X_{1} + \ldots + b_{n}X_{n}, \quad (a_{i}, b_{i} \ge 0)$$
its multiple steady states if and only if

admits multiple steady states if and only if $\sum_{b_i > a_i} a_i \ge 2 \text{ or } \sum_{a_i > b_i} b_i \ge 2$

 A 1-rxn network is multistationary if and only if it is autocatalytic in some set of species which have at least two reactant molecules.

Examples of atoms:

CFSTR examples of atoms:

- $0 \leftrightarrows A \quad , \quad mA \to nA, \quad (n > m \ge 2)$
- $0 \leftrightarrows A, B \quad , \quad A \to 2A \quad , \quad A + B \to 0.$
- A 3-reaction atom (all species are in flow):

(all species are in flow):

 $A \rightarrow 2C$ $C \rightarrow B$ $2B \rightarrow 2A$

$$A + B \rightarrow 0$$
$$A + C \rightarrow 0$$
$$B \rightarrow C + D$$
$$D \rightarrow C + E$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Q: Is there a characterization of atoms??

Definition

A square network has *n* reactions and *n* species. The orientation of a square network $N : X \to Y$ is defined to be

$$Or(N) = \det(X) \det(X - Y).$$

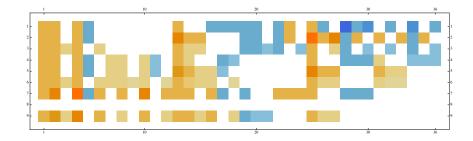
Theorem (Craciun/Feinberg, Joshi/Shiu)

If $m_G \ge 2$, then there exists a square $N \subset_{embedded} G$ such that Or(N) < 0.

Q: Is there a characterization of square, negatively oriented networks? [Conjecture on partial ordering of square, negatively oriented nets]

- ロ ト - 4 回 ト - 4 □ - 4

Square, negatively oriented networks



▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

Square, negatively oriented networks



Thank you!

(ロ)、(型)、(E)、(E)、 E) の(の)