Introduction Definition Properties Construction Discussion Conclusion

### Imperial College London



## Piecewise Linear in Rates Lyapunov Functions for Complex Reaction Networks

### M. Ali Al-Radhawi David Angeli

Dept. of Electrical and Electronic Eng. Imperial College London

Combinatorial and Algebraic Approaches to Chemical Reaction Networks (CRNT Portsmouth'14)

June 24, 2014

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
|              |            |            |              |            |            |
|              |            |            |              |            |            |

1 Introduction





### 4 Construction





| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Backgroun    | ıd         |            |              |            |            |

- Complex Reaction Networks (CRNs) is a multi-disciplinary area of research connecting engineering, mathematics, physics and systems biology.
- Large degree of uncertainty is a problem for the modelling of CRNs.
- Hence, analysis based solely on the structure is desirable, and shall be robust with respect to variations in the values of parameters, and reaction rates.
- Earlier work on asymptotic stability focused on the class of weakly reversible zero deficiency networks (Horn and Jackson 1972, Feinberg 1979).
- Angeli and Sontag (2008), Angeli et al. (2010) used monotonicity for establishing convergence of a class of CRNs.

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Complex      | Reaction I | Vetworks   |              |            |            |

• A CRN is defined by a set of species  $\mathscr{S} = \{X_1, .., X_n\}$ , and a set of reactions  $\mathscr{R} = \{R_1, ..., R_\nu\}$ . Each reaction is denoted as:

$$\mathbf{R}_j: \quad \sum_{i=1}^n \alpha_{ij} X_i \longrightarrow \sum_{i=1}^n \beta_{ij} X_i, \ j = 1, ..., \nu,$$
(1)

• The stoichiometry matrix is an  $n \times r$  matrix which is defined as:

$$[\Gamma]_{ij} = \beta_{ij} - \alpha_{ij}.$$

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| ODE Foru     | Imalation  |            |              |            |            |

The dynamics of a CRN with n species and  $\nu$  reactions are described by a system of ordinary differential equations (ODEs) as:

$$\dot{x}(t) = \Gamma R(x(t)), \ x(0) \in \overline{\mathbb{R}}^n_+$$
(2)

where x(t) is the concentration vector evolving in the nonnegative orthant  $\mathbb{\bar{R}}^{n}_{+}$ ,  $\Gamma \in \mathbb{R}^{n \times \nu}$  is the stoichiometry matrix,  $R(x(t)) \in \mathbb{\bar{R}}^{\nu}_{+}$  is the reaction rates vector.

In addition, the manifold  $\mathscr{C}_{x_{\circ}} := (\{x(0)\} + \operatorname{Im}(\Gamma)) \cap \mathbb{R}^{n}_{+}$  is forward invariant, and is called the stoichiometric compatibility class associated with  $x_{\circ}$ .

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Reaction     | Rates      |            |              |            |            |

We assume that the reaction rate satisfies the following:

A1. it is a  $\mathscr{C}^1$  function, i.e. continuously differentiable;

- **A2.**  $x_i = 0 \Rightarrow R_j(x) = 0$ , for all *i* and *j* such that  $\alpha_{ij} > 0$ ;
- A3. it is nondecreasing with respect to its reactants, i.e

$$\frac{\partial R_j}{\partial x_i}(x) \begin{cases} \geq 0 & : \alpha_{ij} > 0 \\ = 0 & : \alpha_{ij} = 0 \end{cases}$$

A4. The inequality in (6) holds strictly for all  $x \in \mathbb{R}^n_+$ . Furthermore, we assume the following:

- A6. There are no autocatalytic reactions.
- **A7.** There exists  $v \in \ker \Gamma$  such that  $v \gg 0$ .

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Siphons      |            |            |              |            |            |

- Let the set of output reactions of P is denoted by  $\Lambda(P)$ .
- A conservation law is some  $w \gg 0$  where  $w^T \Gamma = 0$ .
- A nonempty set P ⊂ V<sub>S</sub> is called a siphon (Angeli et al 2007) if each input reaction associated to P is also an output reaction associated to P.
- A siphon is a deadlock if  $\Lambda(P) = V_R$ .
- A siphon or a deadlock is said to be critical if it does not contain a set of species corresponding to the support of a conservation law.

| Introduction | Definition  | Properties | Construction | Discussion | Conclusion |
|--------------|-------------|------------|--------------|------------|------------|
| Example      | : Futile Cy | vcle       |              |            |            |



$$X_{1} \longrightarrow X_{2} + X_{5},$$

$$X_{2} + X_{6} \longrightarrow X_{3},$$

$$X_{3} \longrightarrow X_{4} + X_{6},$$

$$X_{4} + X_{5} \longrightarrow X_{1},$$

$$= \begin{bmatrix} -1 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{1}(x) \\ R_{2}(x) \\ R_{3}(x) \\ R_{4}(x) \end{bmatrix}$$

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Motivation   | Ì          |            |              |            |            |

• Consider the following continuous PWL in Rate (PWLR) function:

 $V(x) = |R_1(x) - R_2(x)| + |R_2(x) - R_3(x)| + |R_3(x) - R_4(x)| + |R_4(x) - R_1(x)|$ 

• If we are in the region  $R_1(x) \ge R_2(x) \ge R_3(x) \ge R_4(x)$ , then:

$$V(x) = 2(R_1(x) - R_4(x)).$$

• The time derivative can be written as:

$$\dot{V}(x) = 2\frac{\partial R_1}{\partial x_1}\dot{x}_1 - 2\frac{\partial R_4}{\partial x_4}\dot{x}_4 - 2\frac{\partial R_4}{\partial x_5}\dot{x}_5$$

• Note that in that region we have a determined sign pattern:  $\dot{x}_1 < 0, \dot{x}_4 > 0, \dot{x}_5 > 0.$ 

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Definition   | 1          |            |              |            |            |

### Definition

Given H with ker  $H = \ker \Gamma$ , let

$$\{\mathcal{W}_k\}_{k=1}^m = \{r \in \mathbb{R}^\nu : \Sigma_k Hr \ge 0\}$$

, and assume that  $C = [c_1^T \dots c_{m/2}^T]^T \in \mathbb{R}^{m/2 \times \nu}$ . Then,  $V : \mathbb{R}^n \to \mathbb{R}$  is said to be a Piecewise Linear in Rates (PWLR) function if it admits the representation  $V(x) = \tilde{V}(R(x))$ , where  $\tilde{V} : \mathbb{R}^{\nu} \to \mathbb{R}$  is a continuous PWL function given as

$$\tilde{\mathcal{V}}(r) = c_k^T r, \ r \in \mathcal{W}_k, k = 1, ..., m/2,$$
(3)

and  $c_{k_2} = -c_{k_1}$  if  $\Sigma_{k_1} = -\Sigma_{k_2}$ .

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Defintior    | n II       |            |              |            |            |

### Definition

Let C as above with  $0 \ll v \in \ker C$ . Then,  $V : \mathbb{R}^n \to \mathbb{R}$  is said to be a convex PWLR function if it admits the representation  $V(x) = \tilde{V}(R(x))$ , where  $\tilde{V} : \mathbb{R}^{\nu} \to \mathbb{R}$  is a a convex PWL given by

$$\tilde{V}(r) = \max_{1 \le k \le m/2} |c_k^T r| = ||Cr||_{\infty}.$$
 (4)

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| PWLR L       | vapunov F  | unction    |              |            |            |

### Definition

Given (2) with initial condition  $x_{\circ} := x(0) \in \overline{\mathbb{R}}_{+}^{n}$ . Let  $V : \overline{\mathbb{R}}_{+}^{n} \to \overline{\mathbb{R}}_{+}$  be given as:  $V(x) = \tilde{V}(R(x))$ , where  $\tilde{V}$  is the associated PWL function. Then V is said to be a PWLR Lyapunov Function if it satisfies the following for all  $R \in \mathscr{K}_{\Gamma}$ ,

- Positive-Definite:  $V(x) \ge 0$  for all x, and V(x) = 0 if and only if  $R(x) \in \ker \Gamma$ .
- **2** Nonincreasing:  $\dot{V}(x) \leq 0$  for all x.

The set of networks for which there exists a PWLR Lyapunov function is denoted by  $\mathscr{P}$ .

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Lyanuno      | v's Second | Method I   |              |            |            |

### Theorem (Lyapunov's Second Method)

Given (2) with initial condition  $x_{\circ} \in \mathbb{R}^{n}_{+}$ , and let  $\mathscr{C}_{x_{\circ}}$  as the associated stoichiometric compatibility class. Assume there exists a PWLR Lyapunov function. and suppose that x(t) is bounded,

- then the equilibrium set  $E_{x_{\circ}}$  is Lyapunov stable.
- **2** If, in addition, V satisfies the LaSalle's Condition, then  $x(t) \to E_{x_{\circ}}$ as  $t \to \infty$  (meaning that the point to set distance of x(t) to  $E_{x_{\circ}}$ tends to 0). Furthermore, any isolated equilibrium relative to  $\mathscr{C}_{x_{\circ}}$  is asymptotically stable.

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Lyapunov     | 's Second  | Method II  |              |            |            |

If the boundedness of solution was known a priori, then the former Theorem can be strengthened to the following:

### Corollary (Global Stability)

Consider a CRN in  $\mathscr{P}$  that satisfies the LaSalle condition with a given  $x_{\circ}$ . Assume that all the trajectories are bounded. If there exists  $x^* \in E_{x_{\circ}}$ , which is isolated relative to  $\mathscr{C}_{x_{\circ}}$  then it is unique, i.e.,  $E_{x_{\circ}} = \{x^*\}$ . Furthermore, it is globally asymptotically stable equilibrium relative to  $\mathscr{C}_{x_{\circ}}$ .

The LaSalle's condition can be verified via a certain graphical algorithm.



• Recall that 
$$\mathcal{W}_k = \{r | \Sigma_k H r \ge 0\}.$$

- To ensure nonnegativity, the coefficient vector should have the representation:  $c_k^T = \xi_k^T \Sigma_k H$ ,  $\xi_k > 0$ .
- The continuity constraint can be verified by requiring the existence of  $\eta_{kj} \in \mathbb{R}$  for every pair of neighboring regions  $\mathcal{W}_k, \mathcal{W}_j$  such that

$$c_k - c_j = \eta_{kj} h_{s_{kj}}.$$

- The nondecreasingness condition is met if
  - $\operatorname{sgn}(c_{kj_1})\operatorname{sgn}(c_{kj_2}) \ge 0$  for any pair of reactions  $R_{j_1}, R_{j_2}$  sharing a reactant  $S_i$ . Denote  $\nu_{ki} = \operatorname{sgn}(c_{kj})$ .
  - 2 There shall exist  $\lambda^{(ki)} \in \mathbb{R}^p$ , with  $\lambda^{(ki)} \ge 0$  such that

$$-\nu_{ki}\gamma_i^T = \lambda^{(ki)}{}^T\Sigma_k H,$$



- Recall the representation  $V(x) = \|CR(x)\|_{\infty}$ .
- The nonnegativity and continuity constraints are automatically satisfied.
- The nonnedecreasingness condition can be similarly stated where there shall exist  $\lambda^{(ki)} \in \mathbb{R}^m$ , with  $\lambda^{(ki)} \geq 0$  such that

$$-\nu_{ki}\gamma_i = \sum_{\ell=1}^m \lambda_\ell^{(ki)}(c_k - c_\ell),$$



- For simplicity, assume the system has no inflow reactions.
- Recall the time-derivative in each region  $\mathcal{W}_k$ :

$$\dot{V}(x) = \sum_{j \in J_k} \sum_{i \in I_k} c_{kj} \frac{\partial R_j}{\partial x_i} \dot{x}_i \le 0$$

Since the sign of  $\dot{x}_i$ 's is known, this induce a sign constraints vector  $b_k \in \{\pm 1, 0\}^r$  on the coefficient vector  $c_k$ .

• Hence, The orthogonality condition is to require existence of  $\zeta_k > 0$  such that

$$\zeta_k^T \operatorname{diag}(b_k) u_s = 0$$

for all  $0 < u_s \in \ker \Gamma$ .



Using the previous necessary condition, a simple graphical test for the nonexistence of a PWLR Lyapunov function can be derived. It can be stated as follows:

Corollary

Given  $\Gamma$ . If there exists a critical deadlock, then  $\mathcal{N}_{\Gamma} \notin \mathcal{P}$ .

 Introduction
 Definition
 Properties
 Construction
 Discussion
 Conclusion

 Property of the Jacobian of *P* Networks

- We have shown that networks in  $\mathscr{P}$  with bounded trajectories and satisfying the LaSalle's condition cannot have multiple isolated stoichiometrically compatible equilibria.
- Recall that a matrix is  ${\cal P}_0$  if all its principal minors are nonnegative, Hence:

### Theorem

Given  $\Gamma$ . If  $\mathscr{N}_{\Gamma} \subset \mathscr{P}$ , then the jacobian  $-\Gamma \frac{\partial R}{\partial x}(x)$  is a  $P_0$  matrix for all x, and for all networks in  $\mathscr{N}_{\Gamma}$ .

• It is known that a map is injective if its jacobian matrix is P. In our case, the Jacobian matrix being  $P_0$  implies that the network cannot admit multiple nondegenerate positive equilibria, where no assumption on boundedness is needed (Banaji & Pantea 2014).

IntroductionDefinitionPropertiesConstructionDiscussionConclusionConstruction of PWLR Lyapunov Functions for a GivenPartition

- A generic partitioning matrix is given as:  $H = [\Gamma^T \hat{H}^T]^T$ .
- Consider sign regions  $\{S_\ell\}$  which are generated by  $\Gamma$ . Denote  $q(.): k \mapsto \ell$  if  $\mathcal{W}_k \subset S_\ell$ .
- A linear program can be stated as:

$$\begin{aligned} \mathsf{Find} & c_k, \xi_k, \zeta_k \in \mathbb{R}^{\nu}, \eta_{kj} \in \mathbb{R}, k = 1, ..., \frac{m}{2}; j \in \mathcal{N}_k, \\ \mathsf{subject to} & c_k^T = \xi_k^T \Sigma_k H, \\ & c_k^T = \zeta_k^T \operatorname{diag}(b_{q_k}), \\ & c_k - c_j = \eta_{kj} \sigma_{ks_{kj}} h_{s_{kj}}, \\ & \xi_k \ge 0, \mathbf{1}^T \xi_k > 0, \\ & \zeta_{kj} \ge 0, j \in \{1, ..., \nu\} \backslash \mathcal{I}. \end{aligned}$$

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Remark       |            |            |              |            |            |

• A natural candidate for the partition matrix is  $H = \Gamma$ . Hence, we can write

$$V(x) = c_k^T R(x) = \xi_k^T \Sigma_k \Gamma R(x) = \|\operatorname{diag}(\xi_k) \dot{x}\|_1, R(x) \in S_k.$$

• If we have additional constraint that for all k,  $\xi_k = 1$ , then the Lyapunov function considered by Maeda et al [1978]:

$$V(x) = \|\dot{x}\|_1,$$

can be recovered as a special case.

• However, there are classes of networks for which  $H = \Gamma$  does not induce a PWLR Lyapunov function, while there exists a partitioning matrix  $\hat{H}$  which does.

Introduction Definition Properties Construction Discussion Conclusion
Iterative Algorithm for Convex PWLR Functions

- Recall that for the representation  $V(R(x)) = ||CR(x)||_{\infty}$ , the main condition is nondecreasingness.
- If we start with an initial matrix  $C_0$ , then we devise an algorithm to append rows to  $C_0$  to satisfy the condition.
- Define the active region and the permissible region:

$$\mathcal{W}_0(c_k) := \{ r \in \mathbb{R}^{\nu} : c_k^T r \ge c_j^T r, -m_0 \le k \le m_0, k \ne 0 \}$$
$$\mathcal{P}(c_k) := \{ r \in \mathbb{R}^{\nu} : \nu_{ki} \gamma_i^T r \le 0, i \in I_k \}$$

• Append rows so that  $\mathcal{W}_1(c_k)\subset \mathcal{P}(c_k).$  The new rows can be define as

$$c_{m_0+i} := c_k + \nu_{ki}\gamma_i, i \in I_k.$$

• If Algorithm 1 terminates after finite number of iterations, then we have the required function.

| Introduction | Definition  | Properties | Construction | Discussion | Conclusion |
|--------------|-------------|------------|--------------|------------|------------|
| Special      | Constructio | ons        |              |            |            |

#### Theorem

Consider the network family  $\mathcal{N}_{\Gamma}.$  Suppose the following properties are satisfied:

- $\mathbf{0} \ \dim(\ker \Gamma) = 1,$
- 2  $\forall X_i \in V_S$ , there exists a unique output reaction,

### Then,

• the following is a PWLR function for the network family  $\mathcal{N}_{\Gamma}:$ 

$$V(x) = \max_{1 \le j \le \nu} \frac{1}{\nu_j} R_j(x) - \min_{1 \le j \le \nu} \frac{1}{\nu_j} R_j(x),$$
(5)

where  $v = [v_1 \dots v_{\nu}]^T \in \ker(\Gamma), v \gg 0.$ 

• If the network is conservative, then it is persistent, i.e,  $\omega(x_0) \cap \partial \mathbb{R}^n_+ = \emptyset$  for all  $x_0$ . Furthermore, if there exists an isolated equilibrium, then it is a unique globally asymptotically stable equilibrium with respect to  $\mathscr{C}_{x_0}$ .



• Consider the following network given by Feinberg in 1979:

$$\begin{aligned} X_1 &\coloneqq 2X_2, \\ X_1 + X_3 &\coloneqq X_4 \longrightarrow X_2 + X_5 \longrightarrow X_1 + X_3 \end{aligned}$$

- ► The network has a critical deadlock {*X*<sub>1</sub>, *X*<sub>2</sub>, *X*<sub>4</sub>}, therefore it does not admit a PWLR Lyapunov function.
- The deficiency-zero theorem can be applied with Mass-Action kinetics to show that the interior equilibrium is asymptotically stable despite the existence of boundary equilibria.

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Illustrative | e Example  | П          |              |            |            |

2 On the other hand, consider the following CRN for a given integer  $n \ge 1$ :

$$\begin{aligned} X_1 + E_1 &\longrightarrow E_1 X_1 &\longrightarrow X_2 + E_1, X_2 &\longrightarrow X_1 \\ X_2 + E_2 &\longrightarrow E_2 X_2 &\longrightarrow X_3 + E_2, X_3 &\longrightarrow X_2 \\ \vdots \\ X_n + E_n &\longrightarrow E_n X_n &\longrightarrow X_{n+1} + E_n, X_{n+1} &\longrightarrow X_n, \end{aligned}$$

which has a deficiency n. For every n, there exists a PWLR Lyapunov function for such CRN. This shows that there is no clear relationship between our results and the notion of deficiency.

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Illustrati   | ve Exampl  | e III      |              |            |            |

### Onsider

$$X_3 \xrightarrow{k_1} X_1, \ 0 \xrightarrow{k_2} X_2, X_1 + X_2 \xrightarrow{k_3} X_3,$$

- The three constructions presented yield a Lyapunov function, in particular (5) is a valid one.
- ▶ However, consider the network with Mass-Action Kinetics, and let  $A = x_2(0) + x_3(0)$  be the parameter corresponding to the stoichiometric compatibility class. If  $A > \frac{k_2}{k_3}$ , then the system trajectories are bounded and the unique equilibrium  $\left(\frac{k_2k_3}{k_3A-k_2}, A \frac{k_2}{k_3}, \frac{k_2}{k_3}\right)$  is globally asymptotically stable.
- When  $A \leq \frac{k_2}{k_3}$ , there are no equilibria in the nonnegative orthant, solutions are unbounded and approach the boundary.

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Illustrative | e Example  | e IV       |              |            |            |

Onsider the following network:

$$X_1 \xrightarrow{k_1} X_2, \ X_5 \xrightarrow{k_4} X_4, \ X_2 + X_4 \xrightarrow{k_2} X_3 \xrightarrow{k_3} X_1 + X_5$$

- The linear program with H = Γ is infeasible, however, Algorithm 1 and the Special construction give rise to the PWLR function (5) with v = 1.
- Close examination indicates that if we use a partitioning matrix  $\hat{H} = [1 \ 0 \ 0 \ -1]$ , then the linear program will be feasible.

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Illustrative | Example    | V          |              |            |            |

Onsider the following network:

$$2X_1 + 3X_3 \xrightarrow{k_1} 0 \xrightarrow{k_3} 3X_1 + X_2 + 2X_3, X_1 + X_2 \xrightarrow{k_2} X_3$$

The special construction does not apply. Algorithm 1 does not terminate.

However, the linear program with  $H=\Gamma$  gives the following convex PWLR Lyapunov function:

$$V(x) = \max\{|6R_1(x) + R_2(x) - 7R_3(x)|, |3R_2(x) - 3R_3(x)|, |6R_1(x) - 6R_3(x)|\}.$$

Introduction Definition Properties Construction Discussion Conclusion
Biochemical Example I



Figure: Double Futile Cycle with distinct enzymes.

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Biochemi     | ical Exam  | ple I      |              |            |            |

$$X_0 + E_0 \stackrel{k_1}{\underset{k=1}{\leftarrow}} E_0 X_0 \stackrel{k_2}{\longrightarrow} X_1 + E_0,$$
  

$$X_1 + E_1 \stackrel{k_3}{\underset{k=3}{\leftarrow}} E_1 X_1 \stackrel{k_4}{\longrightarrow} X_0 + E_1,$$
  

$$X_1 + F_0 \stackrel{k_5}{\underset{k=5}{\leftarrow}} F_0 X_1 \stackrel{k_6}{\longrightarrow} X_2 + F_0,$$
  

$$X_2 + F_1 \stackrel{k_7}{\underset{k=7}{\leftarrow}} F_1 X_2 \stackrel{k_8}{\longrightarrow} X_1 + F_1,$$

| Introduction | Definition | Properties | Construction | Discussion | Conclusion |
|--------------|------------|------------|--------------|------------|------------|
| Biochemic    | al Exam    | ole II     |              |            |            |

• The PWLR function constructed can be represented as:

 $V(x) = \|\operatorname{diag}(\xi)\dot{x}\|_1,$ 

- where  $\xi = [2 2 2 1 1 1 1 1 1 1 1]$  and species are ordered as  $X_0, X_1, X_2, \dots, F_1 X_2$ .
- Existing results in the literature does not apply to this network.



- A new type of Lyapunov functions have been introduced for network systems, and CRNs in particular.
- Results have been provided for checking candidate PWLR Lyapunov functions.
- Several methods were introduced for their construction.
- Future direction is develop more exact characterizations for CRNs admitting PWLR Lyapunov functions:
  - Investigate the persistence of  ${\mathscr P}$  networks.
  - Develop control PWLR Lyapunov functions.

| i i i operties | Construction | Discussion | Conclusion |
|----------------|--------------|------------|------------|
|                |              |            |            |

# Thank you

### Further details @ arxiv.org/abs/1407.0662